
Visualization @HPC KU Leuven

Mag Selwa

ICTS, Leuven

27 October 2015 1

Scientific Visualization

ñThe purpose of computing is insight not numbers.ò

R. W. Hamming (1961)

2

Remote Visualization concepts

Å Remote Visualization techniques address the problem of providing

system and applications enabling remote users to interactively

visualize large data sets residing on centralized data infrastructure.

o Data could be collected and shared centrally or produced on HPC

systems by numerical simulations codes.

o Remote users could possibly connect from home (low speed

networks).

Å The traditional approach to visualization has been to transfer the

remote data to a local workstation and then run locally a visualization

application. This approach has several drawbacks:

o The local system has to be powerful enough to handle data

o The latency is concentrated into the initial data transfer step

o The need of explicit complete data transfer prevent tight coupling

between simulation and visualization applications
3

HPC Visualization concepts

Perform scientific visualization on large amounts of data produced on HPC

systems

Å without moving data

Å using high performance machine

4

Overview

ÅVSC infrastructure

ÅVisualization possibilities @ HPC KU Leuven

o X11

o NX

o Paraview remote visualization

ÅVisualization node

o Why the best choice

o How to start

ÅDemo

5

VSC infrastructure

VSC Tier-2
Å UAntwerpen

o 2 clusters, 336 nodes 4492 cores -> 90 Tflops

o + Fat nodes

Å VUB

o 3 clusters, 274 nodes -> 14 TFlops

o + Grid specialization

Å UGent

o 8 clusters, 627 nodes, 10184 cores -> 228 TFlops

o + BigData specialization

Å KU Leuven

o 4 clusters, 256 nodes, 5312 cores -> 140 TFlops

o + shared memory (640 cores, additional 12 TFlops)

o + accelerator specialization (additional 25 nodes)

o + visualization nodes 7

KU Leuven/UHasselt Tier 2

NUMAlink6 / FDR IB IB QDRIB QDR

2x10-core

Ivy Bridge

64/128

GB

176+32

2x12-core

Haswell

64 GB

48

Thin node cluster

24 GB

2x6-core

Westmere

4

2x448

CUDA cores

2x5 GB

Home

NetApp

30 TB

Scratch

DDN1

92 TB DDN2

192 TB

140 TF

5,312 cores

12 TF

640 cores

SMP

SAS

21.8 TB

64x10-core

Ivy Bridge

14 TB

Login nodes

NX Server

64 GB

2x10-core

Ivy Bridge

2x6-core

Sandy Bridge

64 GB

8

2x2688

CUDA cores

2x6 GB

2x6-core

Sandy Bridge

64 GB

8

2x60

Xeon Phi cores 2x8 GB

2 service nodes

Accelerators

Storage

ThinKing Cerebro

Long

Term

600 TB

2x10-core

Haswell

64 GB

2x2880

CUDA cores

2x12 GB

IB FDR

5

2 visualization

nodes

2x10-core

Haswell

2x64 GB

2x2304

CUDA cores

2x8 GB

8

Remote Desktop Manager: VNC

Å A VNC system consists of a client, a server, and a communication protocol

Å The VNC server is the program on the machine that shares its screen. The

server passively allows the client to take control of it.

Å The VNC client (or viewer) is the program that watches, controls, and interacts

with the server. The client controls the server.

Å The VNC protocol (RFB) is very simple, based on one graphic primitive from

server to client ("Put a rectangle of pixel data at the specified X,Y position")

and event messages from client to server.

Å The server receives from client input events and dispatches them to running

applications, it also controls which parts of the screen have been updated by

the running apps, grab them from the Framebuffer, compresses them and

provides them to the client(s).

Å More than one client can connect to the same server sharing the framebuffer

and controlling applications (desktop sharing)

9

Remote Desktop Manager: VNC

Å The setup of VNC connection from user desktop / laptop to the compute node

running the VNC server job results to be quite cumbersome (Job submission +

ssh tunneling on cluster login node)

10

HPC

11

Å 2 visualization nodes (accessible through login node)

o 2x Haswell (Intel Xeon CPU E5-2650 v3)

o 2x 64 GB RAM

o 2x NVIDIA Quadro K5200

o 250 GB scratch/node

o Red Hat Enterprise Linux ComputeNode release 6.4 (Santiago),

64 bit, Kernel 2.6.x

o Direct connection with GPFS file system

Å Software

o ParaView, VisIt,

o VMD,

o ImageMagick , VTK

o VirtualGL

KU Leuven Remote Visualization Service

Hasswell visualization node

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

QPI

QPIcore0

L1 L2

Socket 0

NUMA node 0

Socket 1

NUMA node 1

L3

core0

L1 L2

core1

L1 L2

core2

L1 L2

core3

L1 L2

core4

L1 L2

core5

L1 L2

core6

L1 L2

core8

L1 L2

core9

L1 L2

core7

L1 L2

L3

core10

L1 L2

core11

L1 L2

core12

L1 L2

core13

L1 L2

core14

L1 L2

core15

L1 L2

core16

L1 L2

core18

L1 L2

core19

L1 L2

core17

L1 L2

IB I/O

System comparison

Ivybridge Haswell Haswell

visualization

Total nodes 176/32 48 2

Processor type Ivybridge Haswell Haswell (Intel Xeon CPU

E5-2650 v3)

Base Clock Speed 2.8 GHz 2.5 GHz 2.3 GHz

Cores per node 20 24 20

Total cores 4160 1152 40

Memory per node (GB) 112x64/32x128 48x64 2x128

Memory per core (GB) 3.2/6.4 2.667 6.4

Peak performance (Flops/cycle) 8 DP FLOPs/cycle:

4-wide AVX addition +

4-wide AVX multiplication

16 DP FLOPs/cycle:

two 4-wide FMA (fused

multiply-add) instructions

16 DP FLOPs/cycle:

two 4-wide FMA (fused

multiply-add) instructions

Network Infiniband QDR 2:1 Infiniband FDR Infiniband FDR

Cache (L1 KB/L2 KB/L3 MB) 10x(32i+32d)/10x256/25 12x(32i+32d)/12x256/30MB 10x(32i+32d)/10x256/25MB

Total L3 cache per core 2.5 MB 2.5MB 2.5MB

13

CPU vs GPU

GPU Devotes More Transistors to Data Processing (is designed such

that about 80% of transistors are devoted to data processing rather than

data caching and flow control - the same function is executed on each

element of data with high arithmetic intensity).

14

GPU comparison
K20Xm K40c NVIDIA Quadro

K5200 (visualization)

Total CUDA cores 2688 2880 2304

SMX 14 15 12

Memory 6GB 12GB 8GB

Base Clock Speed cores 732MHz 745MHz 667MHz

Max clock speed cores 784MHz 874MHz 771MHz

Memory Bandwidth 249,6GB/s 288GB/s 192GB/s

Memory Clock 2,6GHz 3.0GHz 1502MHz

Peak double precision floating point

performance

1,31Tflops 1,43Tflops N/A

Peak single precision floating point

performance

3,95Tflops 4,29Tflops 3,074Tflops

Features SMX, Dynamic Parallelism,

Hyper-Q, GPUBoost

SMX, Dynamic Parallelism,

Hyper-Q, GPUboost

SMX, Dynamic Parallelism,

Hyper-Q, GPUboost
15

GPU NVIDIA Quadro K5200 (visualization)

16

Advanced Display Features

Å 30-bit color (10-bit per each red, green and blue channel)

Å Support for any combination of four connected displays

Å DisplayPort 1.2 (up to 4096 x 2160 at 60Hz and 2560 x 1600 at 120Hz)

Å DP 1.2 Supports 4K Displays and MST Hubs

Å DVI-I Dual-Link output (up to 2560 x 1600 at 60Hz and 1920 x 1200 at 120Hz)

Å DVI-D Dual-Link output (up to 2560 x 1600 at 60Hz and 1920 x 1200 at 120Hz)

Å Internal 400MHz DAC DVI-I output (analog display up to 2048 x 1536 at 85Hz)

Å DisplayPort 1.2, HDMI 1.4, and HDCP support (HDMI requires 3rd party adapter)

Å 10-bit internal display processing

Å NVIDIA 3D Vision technology, 3D DLP, interleaved, and other 3D stereo format support

Å Full OpenGL quad buffered stereo support

Å Underscan/overscan compensation and hardware scaling

Å Support for NVIDIA Quadro Mosaic, NVIDIA NVIEW multi-display technology, NVIDIA Enterprise

Management Tools

Å Support for large-scale, ultra-high resolution visualization using the NVIDIA SVS platform which

includes NVIDIA Mosaic, NVIDIA Sync and NVIDIA Warp/Blend technologies

GPU NVIDIA Quadro K5200 (visualization)

17

Render Config

NVIDIA Quadro K5200

(visualization)

Shading Units: 2304

TMUs: 192

ROPs: 48

SMX Count: 12

Pixel Rate: 32.0 GPixel/s

Texture Rate: 128 GTexel/s

Floating-point

performance:
3,074 GFLOPS

Graphics Features

DirectX, OpenGL,

OpenCL,

Shader model

Visualization possibilities

@ HPC KU Leuven

X11, NX, Paraview remote visualization

Large-scale visualization

19

Å Large-scale parallel computations usually produce large-scale

output data

o Gigabytes to terabytes (or more) data

o Ÿ In general also need parallel processing and rendering in

order to visualize

o Ÿ Fast access to data storage necessary

ÅApproach A: visualize on HPC system where data was produced

o Problem #1 - HPC systems usually batch-oriented

ÅCreating visualizations has important interactive component

ÅQueue: need to wait for job to start, unpredictable when it runs

o Problem #2 - GPUs often not available in HPC systems

ÅSoftware-only 2D/3D rendering possible, but on the order of 5x - 50x slower

than using a GPU

Large-scale visualization (2)

20

ÅApproach B: visualize locally

o I.e. on user's own PC

o Problem #1 - Need to transfer data and store it locally

ÅNetwork bandwidth? Storage?

o Problem #2 - Enough CPU/GPU resources available?

Scratch

DDN1

92 TB DDN2

192 TB

Large-scale visualization (3)

21

Å Approach C: remote visualization

o Provide dedicated visualization resources in data center

o Visualization resource has direct fast connection to central storage

o Avoid large data transfers over external network by running

visualization application remotely

o Data stays in data center, only pixels/images sent to external user

Scratch

DDN1

92 TB DDN2

192 TB

Vis. node 1

Vis. node 2SSH

Remote visualization ïX11

22

Å X Windows (X11)

o Used in all modern Linux desktop installations

Å X.org server

o Client-server model

Å X Server

o Client applications connect to server

o Receives input from user

(keyboard, mouse, tablet, etc)

o Forwards input to correct application

o Applications tell X server what to draw on the screen, etc.

o X server manages screen contents

o Communication between clients and server using the X Protocol

Å Powerful feature:

o Run X11 applications remotely

o I.e. X Protocol over network connection X forwarding

X11 & OpenGL: GLX

23

Å GLX (OpenGL eXtension for the X Windows System)

provides the interface connecting OpenGL and the X

Window System: it enables programs wishing to use

OpenGL to do so within a window provided by the X

Window System.

Å GLX consists of three parts:

o An API that provides OpenGL functions to an X

Window System application.

o An extension of the X protocol, which allows the

client (the OpenGL application) to send 3D

rendering commands to the X server (the software

responsible for the display). The client and server

software may run on different computers.

o An extension of the X server that receives the

rendering commands from the client and passes

them on to the installed OpenGL library

X11 & OpenGL: GLX

24

Å Application that wants to draw with OpenGL:

o App uses GLX to get OpenGL context

o App draws 2D/3D primitives with OpenGL commands

o X Server takes care that commands get to OpenGL library

o App Ÿ GLX Ÿ X Server Ÿ OpenGL library Ÿ GPU Ÿ Screen

Å Direct Rendering Interface (DRI):

o App Ÿ OpenGL library Ÿ GPU Ÿ Screen

o Only for applications running on the same

system as the X server (app needs direct access to GPU)

Å Remote applications can only use GLX over network (ñindirect

renderingò)

o Lots of 2D/3D geometry or textures might be transferred from

server to client with GLX

o Possibly new data each frame

Å e.g. animated isosurface, 2D textured slice being moved

through a volume, etc.

General remote X11 disadvantages

25

ÅX11 protocol is quite verbose. On high-latency and/or low-

bandwidth connections it doesn't really work nicely

o e.g. home ź office connection

o on gigabit LANs usually quite usable

ÅNeed X11 server on client-side

ÅGLX Problems:

o Subset of OpenGL features available when using

indirect rendering

o Certain OpenGL extensions need direct GPU access

Å Run an X Window display server (X server) on your local computer.

You start up such a program and leave it running in the background.

Å Connect to the cluster through your normal ssh terminal program,

with X11 forwarding enabled. This establishes the X11 connection

between the VSC cluster and your local computer.

Å Start the GUI application (e.g. gnuplot) on the cluster. The graphical

output of the program will display on your desktop.

Å Interact with the GUI application using your mouse and keyboard.

Your keyboard and mouse commands will be relayed in the other

direction, allowing to interact with the running application on the VSC

system.

Å Problems:

o slow; not recommended for complex graphics

o X server running locally -> enough resources???

Using X11 for GUI interaction

26

Windows users:

ÅPuTTY is a simple-to-use

and freely available GUI

SSH client for Windows.

ÅPageant can be used to

manage active keys for

PuTTY

ÅXming: using X-windows

to display graphical

programs

Using X11 for GUI interaction

27

Linux users:

Å ssh -X vsc30000@login.hpc.kuleuven.be

Å Too slow?-> NX

o NX accelerates remote X11 applications by using various

strategies to compress the X protocol, reducing the amount

of round-trip network interactions

ÅProblems:

o NX cannot take advantage of the 3D acceleration provided

my modern video cards, i.e. the 3D applications either do not

work at all, are forced to use a slow software 3D renderer, or

(worse) are forced to send every 3D command and piece of

3D data over the network to be rendered on the client

machine.

Using X11 for GUI interaction

28

NX technology:

ÅHandles remote X Window System connections, and

attempts to greatly improve on the performance of the native

X display protocol to the point that it can be usable over a

slow link such as a dial-up modem.

ÅWraps remote connections in SSH sessions for encryption.

ÅNX software is currently available for Windows, Mac OS X,

Linux, and Solaris.

ÅThe two principal components of NX are nxproxy (both on

remote and local - server machines simulating an X server

on the client) and nxagent (started on the remote - client

machine, thus avoiding most X11 protocol round trips).

What is NX?

29

What is NX?

NX works by creating an nx-user on the server machine whose

shell is executed any time a remote NX user connects to SSH

using NX Client.
30

NX allows the user:

ÅTo log in remotely (over a slow internet) to a server,

ÅLogin is graphical (GUI serves as development

environment),

ÅNX also allows to suspend and resume sessions,

ÅDuring suspension, the processes invoked inside the

session continue to run,

ÅTherefore NX can be used as a graphical alternative to

SSH+screen application.

What is NX?

31

ÅKeeps session open,

ÅAlternative for people using screen,

ÅMore interactive jobs,

ÅEasy in use for editing, file management, developing

software,

ÅDifferent limits of CPU (regular login node 36 min, NX node

extended to 2 hrs)

ÅIt is a shared resource!

Main advantages of NX

32

ÅHPC users that prefer GUI,

ÅHPC users that have no/little experience with command

line,

ÅHPC Linux users that are used to certain settings and

shortcuts,

ÅHPC researchers that would like to display results easily,

ÅHPC users that are in a process of interactive job and do

not want to loose the session when taking laptop home,

ÅHPC users that often use screen,

ÅHPC users that need to work from mobile devices.

Who should use it?

33

NX virtual desktop

34

ÅAccesories: Gedit, Vi IMproved, Emacs (dummy version),

Calculator,

ÅGraphics: gThumb (picture viewer), Xpdf Viewer,

ÅInternet: Firefox,

ÅHPC: Computation: Matlab (2014a), RStudio, SAS;

Visualisation: Paraview, VisIt, VMD

ÅProgramming: Meld Diff Viewer (visual diff and merge tool),

ÅSystem tools: File Browser, Terminal,

ÅAdditionally: Gnuplot (graphing utility), Filezilla (file transfer

tool), Evince (PDF, PostScript, TIFF, XPS, DVI Viewer),

ÅSoftware launched through modules from Terminal.

NX: available software

35

Åhttps://www.vscentrum.be/client/multiplatform/nx-start-

guide

ÅConfiguration guide:

https://www.vscentrum.be/assets/195

needs conversion of key (Windows)

NX: How to get started

36

https://www.vscentrum.be/client/multiplatform/nx-start-guide
https://www.vscentrum.be/assets/195

ÅParaview is a powerful, general purpose, open source

visualization tool.

Å It is possible to connect a ParaView client, running on your local

desktop, to a ParaView server running on a compute node (CPU

or GPU).

Å The server streams the geometry data to the client and the client

handles all of the other interactions locally. This is quite efficient

on slower network connections.

ÅUsing ParaView in this manner is similar to using ParaView in a

remote visualization form but in this mode of operation Paraview

(rather than VNC) takes care of communicating the user

interaction and visualization data between the client (on your

local computer) and the server (running on a compute node).

Paraview remote visualization

37

ÅYou should have ParaView installed on your desktop. The client and

server version should match to avoid problems!

ÅWorking with ParaView to remotely visualize data requires several

steps:

1. start ParaView on the cluster

o $ qsub - I - l nodes= 1: ppn=20

o $ module load Paraview/4.1.0 - foss - 2014a

o $ n_proc =$(cat $PBS_NODEFILE | wc - l)

o $ mpirun - np $ n_proc pvserver -- use - offscreen -

rendering -- server - port=11111

o In this mode, all data processing and rendering are handled in the

same parallel job

Paraview remote visualization

38

2. establish an SSH

tunnel;

o Log in on the login

node

o Start the server

job, note the

compute node's

name the job is

running on (e.g.,

'r1i3n5'), as well as

the port the server

is listening on (e.g.,

'44444').

Paraview remote visualization

39ssh - L11111:r1i3n5:44444 - N vsc30000 @login.hpc.kuleuven.be

3. connect to the remote server using ParaView on your desktop:

o start ParaView on your Desktop machine

o from the 'File' menu, choose 'Connectā

o click the 'Add Server' button

o enter a name in the 'Name' field, e.g., 'Thinking'.

o set the 'Startup Type' from 'Command' to 'Manual' in the drop-down

menu, and click 'Save'.

o in the 'Choose Server' dialog, select the server, i.e., 'Thinking' and click

the 'Connect' button.

Paraview remote visualization

40

o you can now work with

ParaView as you would

when visualizing local files.

4. terminate the server session

on the compute node

o $ logout

Visualization nodeï

why the best choice

Remote visualization

42

ÅVirtualGL

o Popular package for remote visualization

Å TurboVNC

o Good way to provide access to remote visualization applications

Remote visualization

43

ÅMeant for interactive visualization applications

o ParaView already remote (client-server)

o What about other applications?

ÅRemote rendering using Linux/Unix application and

visualization nodes

Å2D/3D rendering with OpenGL

o Low-level API for drawing 2D and 3D content

o All self-respecting graphics cards support it

o De-facto standard for rendering on Linux/Unix

Remote visualization - Concept

44

ÅDedicated visualization resource

o Usually cluster of render nodes (one or more GPUs per node)

o (Fast) interconnect between nodes

o Fast connection to central storage

o Reasonable connection to outside world

o User connects to resource and only receives visualization

output

ÅUser advantage: facility maintained by HPC center

ÅOpen questions

o How to work with applications remotely?

o License issues

o What software is supported/what isn't?

Better remote rendering idea?

45

ÅWe want to run applications remotely, as if they're running

on our desktop

ÅBut want to use a server-side GPU

ÅHow? This is where VirtualGL comes in...

VirtualGL

46

ÅHistory

o Started by Sun as part of the Sun Visualization System

o VirtualGL open-sourced when Sun stopped supporting

SVS

ÅOpen-source

ÅSupported platforms

o Server: Unix (Linux, Solaris)

o Client: Unix, Windows, MacOS

ÅNote: server only available on Unix-like systems, but in

general those are the systems used for servers anyway

VirtualGLïSplit Rendering

47

Å VirtualGL redirects the 3D rendering commands from

Linux OpenGL applications to 3D accelerator hardware

and displays the rendered output interactively to a client

located elsewhere on the network.

Å 3D rendering commands intercepted at remote side and

forwarded to remote GPU

o 3D OpenGL rendering commands

o Need X server (3D X server) and GPU on remote

side

Å 2D commands go to local X server (2D X server)

untouched

o Menus, buttons, etc.

o Basically unaltered remote X11

Å Resulting image from 3D rendering read

back

o Extra image stream needed to transfer

3D image result to user's side

VirtualGLïBehind the scenes

48

Å VirtualGL preloads a shared library that intercepts some GLX, X11 and OpenGL calls

o New window created by application Ÿ VirtualGL creates corresponding offscreen

rendering buffer (PBuffer) on remote GPU

ÅWindow resize Ÿ offscreen buffer adjusted

o OpenGL draw commands executed Ÿ Drawing is done on Pbuffer

o Application finishes rendering frame Ÿ Pbuffer contents read back and 3D image

sent to client

o All other calls left untouched

Å All OpenGL features available, because Pbuffer on local GPU is used

o No missing extensions, etc.

o If application runs locally on a server, it will run remotely on that server under

VirtualGL

Image delivery method: VNC (X Proxy)

49

Å X Proxy (Virtual X server)

o Acts like an X server, but provides only minimal functionality

Å E.g. no keyboard/mouse input

Å No access to GPU

Å Most useful proxy is VNC server (Virtual Network Computing)

o Similar to Remote Desktop Protocol (RDP) on Windows

o VNC is a widely used remote desktop technology

Å User connects VNC viewer to VNC server

Å Server sends back updated desktop image, shown in

VNC client

Å User's keyboard and mouse input are transferred to

application on VNC server

o Efficient transfer of changes in the desktop image

Å Desktop image divided in tiles

Å Only tiles that have changed since last frame sent to

client

Å Different compression method per tile possible

TurboVNC

50

ÅPreferred X proxy for VirtualGL

o Good integration with VirtualGL

o VirtualGL and TurboVNC maintained by same software

developers

o TurboVNC was specifically created to handle interactive 3D

and video workloads

ÅUses optimized JPEG compression routines

ÅStable, good documentation

ÅSupported platforms

o Server: Unix (Linux, Solaris)

o Client: Unix, Windows, MacOS

ÅSee http://www.virtualgl.org

http://www.virtualgl.org/

TurboVNC - Usage

51

Server node

Å Set password (one-time action)

o $ vnc passwd

Å Start VNC server

o $ vncserver [- geometry

<width>x<height>]

Å Stopping

o $ vncserver - kill :1

Å Listing active VNC servers

o $ vncserver - list

Å Server log files in $VSC_HOME/. vnc

o Contains info on connections, compression

settings,etc.

o Useful for debugging connection problems

Å Can put extra environment options in startup

script
$VSC_HOME/. vnc / xstartup.turbovnc

Client node

Å Connect with VNC viewer from client

machine

o $ vncviewer <server>:1

TurboVNC + VirtualGL

52

Å Visualization applications running inside a VNC

session need access to GPU

o The VNC server itself has no access to

GPU, as it is only a virtual X server, not a

real one

o VirtualGL takes care of 3D interception

Å How to use:

o Login in on server machine,

o start TurboVNC server

o Connect with VNC client to server

o Use vglrun command when starting
application in VNC session, e.g. $ vglrun

ïd :0 paraview

53

In viewer:

Å Options

o Set compression and JPEG quality settings

o Mouse/coursor settings

o Logfile settings

Å Connection info

Å Fullscreen on/off

Å Request screenrefresh

Å Request lossless refresh

Å Send Ctrl+Alt+Del, Ctrl+Escé

Å New connection

Å Save connection

Å Disconnect

TurboVNC - Options

54

Å Basically none provided in the RFB protocol!

o Although passwords aren't sent in cleartext when authenticating...

o ...keystrokes and desktop images in a VNC session are unprotected!

o E.g. passwords you enter within a VNC session to login to other

machine are going over the network in the clear

Å How paranoid should you be about this?

Å We use SSH tunneling

o Will cost a bit of performance, but still very usable

o $ ssh - L 590<d>:localhost:590<d> < remote - server >

o $ vncviewer localhost :<d>

o On Linux with TurboVNC:
Å $ vncviewer - via < remote - server > localhost:<d >

(Turbo)VNC - Security?

55

Å Advantages

o Better interactivity compared to remote X11, efficient network usage

Å High-speed JPEG image compression

Å Only updated parts of desktop image get transferred

o If connection from client to server is lost, remote desktop will stay alive as

long as VNC server keeps running. Simply reconnect with client.

Å Disadvantages

o Need to open up extra TCP port(s) on the remote machine for incoming VNC

client connections

Å VNC :<d> will listen to TCP port 590<d>

Å Use SSH tunneling

o Need to use SSH tunneling when security matters

o VNC client window shows remote desktop in a window on your normal

desktop, can be confusing with keys, focus, mouse, etc

(Turbo)VNC - Summary

Settings

How to connect

57

Å $ qsub - I - X - l partition=visualization

Å vsc30468@r10n3 ~ $ module load TurboVNC/1.2.3 - foss - 2014a

Å $ vncpasswd

o Password:

o Verify:

o Would you like to enter a view - only password (y/n)? n

o Cannot write password file

/user/ leuven /304/vsc30468/. vnc / passwd

Å $ mkdir . vnc

Å $ touch . vnc / passwd

Å $ vncpasswd

o Password :

o Verify:

o Would you like to enter a view - only password (y/n)? n

How to connect

58

Å $ vncserver (- depth 32 - geometry 1600x1000)

Desktop ' TurboVNC: r10n3: 1 (vsc30468)' started

on display r10n3: 1

Creating default startup script

/user/ leuven /304/vsc30468/. vnc / xstartup.turbovnc

Starting applications specified in

/user/ leuven /304/vsc30468/. vnc / xstartup.turbovnc

Log file is

/user/ leuven /304/vsc30468/. vnc /r10n3: 1.log

host display

How to connect

59

Å $ vncserver

o Desktop ' TurboVNC:

r10n3 : 1 (vsc30468)'

started on display

r10n3: 1

o Source port=590<d>,

where <d> is display

number

o Destination =

host:5901<d>

In Linux:
Å $ ssh - L 590<d>: host :590 <d> - N vsc3 0000 @login.hpc.kuleuven.be

Å e.g. $ ssh - L 5901: r10n3 :590 1 - N vsc3 0000 @login.hpc.kuleuven.be

How to connect

60

Å $ vncserver

o Desktop ' TurboVNC:

r10n3 : 1 (vsc30468)'

started on display

r10n3: 1

o Source port=590<d >,

where <d> is display

number

o Destination =

host:5901<d>

In Linux:
Å $ ssh - L 590<d>: host :590 <d> - N vsc3 0000 @login.hpc.kuleuven.be

Å e.g. $ ssh - L 5901: r10n3 :590 1 - N vsc3 0000 @login.hpc.kuleuven.be

